APPROACHING THE DESKTOP SUPERCOMPUTER

Trevor G Marshall

YARC Systems Corporation

ABSTRACT

Todays desktop Personal Computers, in conjunc-
tion with RISC coprocessing technology, can
deliver the same computational performance as
an IBM 3090 (approx 25% of a CRAY-1) without
the delays associated with job submission and
execution priorities. This is changing the way
researchers view their computing capabilities, and
opening up a new era of productivity in scientific
computing.

This paper examines the history of 'desktop
supercomputing’, the current status of the
technology, and the problems still remaining to be
solved.

INTRODUCTION

The technical computing marketplace has been
traditionally dominated by networks of terminals
connected to multiuser, multitasking mainframes
or supercomputers. Some years ago the terminals
were given local intelligence, allowing some
functions, such as source editing, to be offloaded
from the host, and more recently Personal
Computers have allowed some degree of
algorithmic testing before submission of the job to
the host [1].

By offloading computing tasks to the desktop a
scientist gains in productivity in a number of ways.
Firstly, desktop computing is invariably less
expensive than CPU time at a supercomputing
center [1]. Secondly, the time between submis-
sion of a job and receipt of the results becomes
deterministic, and not subject to time slice
availability on the host. Finally, if the PC has some
idle time, it costs nothing to run a job with slightly

CH2843-1/90/0000/0200$01.00 © 1990 IEEE

altered parameters, 'on a hunch’, just to see what
happens. Scientific intuition has often been
constrained by the need to stay within a fixed
computing budget which was set long before the
project began.

The performance of today's advanced RISC PC
coprocessor systems is close to that of scientific
mainframes, such as the IBM 3090, and the PC
will only be clearly outperformed by Supercomput-
ers if the problem is significantly non-scalar.

DESKTOP COMPUTERS

Desktop Computers fall into two major categories.
Workstations are generally the most expensive
desktop computers, often having multiuser
capability. Personal Computers (in the scientific
arena) are typically MSDOS based machines
using the INTEL 80386 or 80486 CPUs with 80387
or Weitek floating point chips. The APPLE
Macintosh PC has also become very popular with
scientists due to its extremely simple user
interface.

WORKSTATIONS

Workstations essentially can be viewed as large
scale computing systems cut down in size and
capability to yield a useful desktop package. They
invariably run a variant of the UNIX operating
system. UNIX is an operating system that seduces
the user with promises of application portability
between dissimilar platforms, but which neglects
to mention that you cannot get binary portability
between microprocessors with different instruc-
tion sets. It is an excellent development
environment, and is usually emphasised in
Computing Science courses in our Universities.

The complexities associated with a UNIX system
are often intimidating to the average scientist.

N




Carefully secured access passwords and priorities
have little place in a single user, desktop, environ-
ment. In addition, a UNIX operating system has
significant overhead. Typically as much as 40
megabytes of the disk system and 2 megabytes of
RAM storage are dedicated to use by the operat-
ing system itself.

Nevertheless workstations are very visible partici-
pants in the 'Technical Computing’ marketplace,
which is currently estimated at around $20 billion,
worldwide. Workstations have penetrated about
15% of this total marketplace.

PERSONAL COMPUTERS

Personal computers have traditionally been distin-
guished from Workstations by two factors: a sim-
plified operating environment and easy extensibil-
ity. RAM, disks, and other peripherals can be
easily and inexpensively added by a user with
virtually no technical expertise.

Additionaily, Personal Computers are allegedly
‘user friendly’. For instance, if the power to the
computer is accidentally removed a Personal
Computer will not loose its filesystem. A UNIX
system will invariably suffer filesystem damage
under the same circumstances, and may require
the services of a 'UNIX guru’ to recover lost data.

Most operating system commands are less pow-
erful in a Personal Computer. This leads to both
advantages and disadvantages. It is not possible
to accidentally issue an 'rm * ' command to a PC.
The same command in a UNIX system will remove
all files from the current directory whether the
user really intended that action or not! Conversely
that task on a PC takes several additional
keystrokes. Typical scientific users prefer the
safer PC methodology, whilst programmers prefer
the more powerful command structure of UNIX.

Unfortunately even the most advanced Personal
computers rarely have the power to perform com-
plex scientific calculations. This is due to limita-
tions in two areas, architectural limitations in the
PC, and lack of maturity in the software tools. Both
of these can be solved with RISC Coprocessor
Technology.

ARCHITECTURAL LIMITATIONS OF PCs

The IBM PC was originally designed with 64
Kilobytes of main memory. This matched the
segmented memory architecture of the INTEL

8088 CPU. MSDOS was written to support this
segmentation. In order to maintain software com-
patibility even current versions of DOS (which
typically operate with at least 640K of RAM) manip-
ulate data, address and stack spaces in segments
of 64K,

This makes it very difficult to support large data
structures, such as are common in scientific com-
puting. Extra code has to be included into an
application to check which 64K segment a particu-
lar array element is stored in before it can be
accessed.

Recently a number of compilers have become
available using a technology called 'DOS exten-
ders' to use the linear address capabilities of the
80386 processor. These have removed the 64K
segmentation limitation, and the performance of
80386 PCs using extender software technology is
almost always in excess of that of a VAX 11/780.

The APPLE Macintosh operating system was also
designed to manipulate chunks of memory, in this
case only 32K large at a time. It is very difficult to
port large FORTRAN applications to a Macintosh.
Computing Coprocessors are by far the best way
to enhance the capabilities of this PC platform.

ARRAY PROCESSORS

One of the earliest approaches to increasing the
computing power of a PC was to use Array Pro-
cessors to perform that portion of the calculations
which were enhanced by the vector concurrency
or the fast Static RAM available on the array
processors.

The early PC AP Systems were derived from the
mainframe and minicomputer AP technologies
that had become relatively mature before the PC
burst onto the scene. Companies such as Sky and
Marinco shipped PC array processor products as
early as 1984.

Unfortunately, the bandwidth of the PC bus is very
much less than that of a mainframe and the
computational usefulness of the array processors
was limited by the time taken to transfer the data
structures from the host PC to and from the AP
memory.

In addition, source code has to be rewritten to
accomodate array processors, with calls to special
subroutines being substituted for appropriate sec-
tions of the original code. This is generally not




acceptable to a scientist unless there is just no
other way to approach the problem.

COMPUTING COPROCESSORS

In 1984 a new architecture for PC enhancements
was described [2]. The 'Trump Card’ had a Z8000
16 bit processor running a BASIC language soft-
ware system as a computing coprocessor.

Whereas an array processor only runs selected
portions of a user's code a computing coproces-
sor takes over the execution of the entire compu-
tational task, freeing the host PC's CPU for /O
tasks, such as filesystem maintenance and opera-
tor interface.

Even though the Z8000 was executing a high level
language it did not execute a copy of any Operat-
ing System, merely passing parameters to the host
MSDOS in such a way as to create and use files
that were identical to those created by a program
running on the host PC.

This was the first practical demonstration of a
user- transparent coprocessing environment (al-
though the 'Baby Blue’ coprocessor from Microlog
had previously used a Z80 CPU to run CP/M 80 in
an MSDOS host).

EARLY 32 BIT COMPUTING COPROCESSORS

In 1985 this author described a computing copro-
cessor system based on the National Semicon-
ductor 32032 CPU [3].

This was a significant advance over the Trump
card in several areas. Multiple languages had
been developed, and these languages had been
ported from a UNIX environment offering PC
portability for applications previously targeted for
UNIX. Interaction between the coprocessor soft-
ware and the PC operating system had been
significantly enhanced so that any task that could
be performed by software on the host CPU could
also be performed by software running on the
32032.

By middle 1986 the technology had advanced to
the point where the author's 68020 based copro-
cessor system [4] consistently provided the same
computational performance as a VAX 11/780 over
a wide range of scientific applications.

RISC MICROCOMPUTERS

At this point in time scientific micro- computing
performance standards are defined by systems

202

based on RISC processors. Although RISC tech-
nology in and of itself is not necessarily signifi-
cantly superior to the CISC, a number of factors
have combined to position RISC systems at
higher performance levels than thier CISC coun-
terparts.

Firstly, architects of RISC computer chips have
started their designs with a clean slate. There
were no previous generations of software with
which compatibility had to be maintained, no
preconceived notions of hardware interface tech-
nology to be maintained between generations of
processors.

Additionally, it is easier to design a memory
system for a modern RISC chip, because the
software can maintain closer control of the internal
pipeline status than with its CISC counterpart,
making it possible to use load scheduling and
other optimisation techniques to hide the wait
states introduced when interfacing to real-world
memory systems.

In terms of performance the two leading micro-
computer families are those based on the MIPS
R3000 chipset and those based on the AMD
29000. The Motorola 88000 family is also a con-
tender, but only for smaller problem sizes. The
reasons for the differences in performance be-
tween the RISC families are surprising, and worth
further examination.

The 88100 is a very fast CPU, with an integrated
FPU that makes it arguably the fastest single
precision floating point engine available. It pro-
duces its best results on small programs, such as
the whetstone benchmark, that fit within its small
16K data cache. It does not perform well with
large problems primarily because of a minor de-
sign flaw in the 88200 cache controller. When
there is a cache miss the whole 4 word cache line
must be refilled before execution can continue.
Thus for programs whose data has good locality of
reference the 88100/88200 chipset turns in su-
perlative performance (its whetstone figures are
essentially equivalent to the CRAY-18), but when
sparse matrices are being manipulated it is usual
that at least 2 words of each cache line are never
used, and the overhead associated with having to
wait for them to be filled on each cache miss, is
crippling. For example, when Guass- Jordan re-
duction of a 200x200 matrix is attempted (the
Argonne Labs LINPACK benchmark suite) its




CRAY- relative performance has dropped to only
10% of what it achieves with Whetstones.

The MIPS R3000 family very closely integrates the
Floating Point controller with the CPU, so that
even though they are separate chips there is very
little overhead passing data between them. In
addition, the MIPS computer system is closely
designed around its cache memory. Software post
optimisers re- arrange the machine language in-
structions so as to maximise the ’hits’ on the
cache memory. The combined effect of this opti-
miser, the CPU/FPU integration, the relatively
large cache memories, and the investment in
system software has made MIPS based systems
the performance leaders for the past few years.

The AMD 29000 achieves its high performance
because of an innovative memory architecture:
externally Harvard. Although many of the current
generation of CPUs have separated data and
instruction paths internally, only the 28000 design-
ers chose to support separated paths between the
chip and main memory.

This has many ramifications. Firstly, it is possible
to design a 29000 memory system specifically
intended for instruction access, and one that only
has to handle data memory references. Instruction
accesses are typically sequential (between
branches) and new architectures such as 'Inter-
leaved Burst Mode’ can give cache memory per-
formance with lower cost and system complexity
[5][6]. Data memory acesses, however, are mostly
random in nature, and the design topology of a
data RAM subsystem is quite different. Because
the code stream continues to flow to a 29000 even
when the data pipeline is waiting for a response
from slow external memory, it is still possible to
obtain very high performance without the cost and
complexity of a data cache [6].

29000 PC AND MACINTOSH COPROCESSORS

During 1988 and 1989 YARC Systems released a
series of AMD 28000 RISC based computing co-
processors for PCs.

The IBM PC based versions transparently use the
host MSDOS operating system to provide a scien-
tific computing platform that, although it is oper-
ated identically to any other MSDOS application,
actually performs all the computation on the RISC
processor.

The Macintosh il based systems also operate

transparently to the user. To bring up the FOR-
TRAN compiler, for instance, one merely double-
clicks on its ICON, exactly as if operating native
Macintosh software. Only the execution speed
reveals the fact that the code is actually running
on the RISC processor. All files are manipulated
by puli-down menus, in the normal manner.

Both these systems use tools (such as FORTRAN
and C compilers) that run native on the 29000 and
allow total portability with most applications de-
signed for the UNIX environment. The operating
system on each coprocessor is designed for opti-
mal single tasking, single user, applications, and
takes less than 16K of the 8 megabytes of avail-
able RAM on the coprocessor.

Both coprocessors support Bus Master operation,
giving direct access to bulk RAM and peripherals
on the bus. This can speed video drawing times
by an order of magnitude.

MULTITASKING

The DesqView operating system augments an
MSDOS PC to allow multi- tasking. Performance is
especially good on 80386 based hosts. A task can
be dispatched to the computing coprocessor, and
switched to the background, freeing the host for
tasks such as editing, printing and other tasks.

The Macintosh MuitiFinder operating system is
quite adequate to allow editing of source files and
other host related tasks whilst a coprocessor is
crunching as a background task.

Muitiple Computing Coprocessors can be oper-
ated in the one PC (using DesqView) orin a
Macintosh (using Multifinder). Compute intensive
jobs can be dispatched to each of these proces-
sors, increasing the number of jobs that can be
computed at one time and further increasing
productivity.

PROBLEM AREAS

Personal computers are designed primarily for
single user, single tasking applications. They usu-
ally have a single disk subsystem, and MSDOS
cannot even perform overlapped seeks. By com-
parison with the disk units on a mainframe or
supercomputer such technology is very crude.
Neverthless good results can be obtained pro-
vided disk l/O is kept to a minimum.

Many application programs written for Mainframes
and Supercomputers have been designed to per-




form a lot of disk I/O so that they will operate with
only a few megabytes of RAM memory, as swap
space is often a critical factor in determining the
priority one’s job will obtain when submitted to the
supercomputing center. When using a coproces-
sor it is best to keep all intermediate results in
local memory, if possible, and not write intermedi-
ate matrices out to files. If the 8 megabytes of high
speed memory is inadequate to hold all the data
then bulk RAM storage on the bus should be
used. This is easier to do in a Macintosh than in a
PC. This is fortunate, as the Macintosh disk I/O
system is considerably slower than that of the IBM
style PC.

VECTORIZABLE APPLICATIONS

Microcomputer software currently has no capabil-
ity to recognize inherent vectorisable structures in
programs and despatch them to the appropriate
execution units. Now that more concurrency is
available within chips such as the 29050, 88100
and the 80860 it is becoming imperative that
software be developed to allow the microcomput-
ers to catch up with the capabilities of the super-
computers in this area.

SUMMARY

The scalar computing performance of a desktop
Personal Computer equipped with a computing
coprocessor system is essentially the same as
that of typical mainframes and approaches that of
supercomputers. Professor Stuart Savage [7] re-
ports that the 29000 based PC coprocessor takes
an hour to run one of his applications, about the
same time as his IBM 3090. The same problem
takes 4 hours on a SPARC (non Harvard) based
computing system and 23 hours on an
80386/80387 PC without coprocessor assistance.
This example is not given for the purpose of
‘proving’ that any particular technology is better
than any other, (obviously the performance incre-
ments will be critically dependant on the applica-
tion) but to illustrate that coprocessing technology
has come of age, and is unlikely to disappear as a
viable computing solution.

Computing Coprocessors offer the highest levels
of performance with simplicity of operation, bring-
ing supercomputer power to the desktop without
adding complexity to the well accepted PC soft-
ware environments.

REFERENCES

A.G.W.Cameron, "The Number-Crunching
Revolution", Computers in Science, Vol.1,
No.3, p.4, 1987

S.Ciarcia, "Speed up your PC with 16 bit
Processing Power", BYTE, Vol 9, No 5, May
1984, pp 40-55

Trevor G Marshall et al., "The DSI-32 Copro-
cessor Board", BYTE, August 1985, p 120

Trevor Marshall et al., "The Definicon 68020
Coprocessor”, BYTE, July 1986, p 120

T.G.Marshall, "Real World RISCs", BYTE, May
1988, p 263

T.Marshall, "Standard DRAMs get 15 MIPS
from RISC", Electron. Syst. Des. Mag., Vol 18,
No 12, December 1988, pp 52-56.

Professor Stuart B Savage, MCGill University,
Private Communication.




